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Abstract
One-dimensional scattering by a Coulomb potential V (x) = c

|x| is studied
for both repulsive (c > 0) and attractive (c < 0) cases. Two methods of
regularizing the singularity at x = 0 are used, yielding the same conclusion,
namely, that the transmission vanishes. For an attractive potential (c < 0),
two groups of bound states are found. The first one consists of regular
(Rydberg) bound states, following standard orthogonality relations. The second
set consists of anomalous bound states (in a sense to be clarified), which always
relax as coherent states.

PACS numbers: 03.65.Ge, 03.65.Nk, 11.55.Bq, 11.55.Ds, 73.21.Fg, 73.22.Dj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One-dimensional quantum Hamiltonians are very useful in modeling simple quantum systems.
Beside their ubiquitous importance in the study of transmission and tunneling experiments,
numerous quantum systems in higher dimensions can be reduced to one-dimensional ones,
due to symmetry (for instance radial wavefunctions in a central potential) or specific physical
properties (Josephson junctions or edge states in the quantum Hall effect are just two examples).

The aim of the present work is to examine one-dimensional scattering by a three-
dimensional Coulomb potential V (x) = qq ′

4πεo|x| , starting from the Schrödinger equation with

the Hamiltonian H = p2

2m
+ V , for an eigenstate ψ(x), with x ∈ R∗ ≡ R \ {0},

−d2ψ

dx2
(x) +

λ

|x|ψ(x) = eψ(x), (1)
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with λ = 2mqq ′

4πεoh̄
2 and e = 2mE

h̄2 where E is the energy. λ > 0 corresponds to the repulsive
potential, λ < 0 to the attractive one. The boundary conditions will be specified later on. This
is referred to as the one-dimensional Coulomb potential problem. Although it has recently
been studied [1], we find it necessary to analyze it using a somewhat different approach. As
it turns out, there are some subtleties involved, which might affect some of the conclusions
reached in [1].

One of the main advantages encountered in the quantum Coulomb problem is that the
exact wavefunctions are computable. In three dimensions, it was shown 80 years ago [2] that
the asymptotic behavior of the wavefunctions is somewhat distinct from that of plane waves.
This property has been shown to be valid also in one dimension [3].

It proves useful to follow, first, the standard reduction of the Coulomb problem in three
dimensions into a radial one-dimensional equation, and to point out the differences between
this equation and equation (1). Starting from the three-dimensional Schrödinger equation,
carrying out the partial wave expansion �(r) = ∑∞

l=0(2l + 1)ψl(r)Pl(cos θ) and writing the
radial wavefunction as ψl(r) = r−1φl(r), one obtains the radial Schrödinger equation for
φl(r), with 0 < r < ∞,[

− d2

dr2
+

l(l + 1)

r2
+

λ

r

]
φl(r) = eφl(r). (2)

For l = 0 (s wave scattering), equation (2) has the same form as equation (1). The two
basic solutions of equation (2) are the regular one, satisfying φl(0) = 0, and the singular
one, satisfying φl(0) �= 0. The singular solution should be discarded: if not, for l > 0, the
probability of finding the particle in a sphere of radius R,Pl(R) = ∫ R

0 ρl(r)2πr2 dr becomes
infinite for any R; for l = 0, the situation is more subtle, P0(R) remains finite, but the radial
current J0(R) = ∫ R

0 j0(r)2πr2 dr > 0 becomes nonzero, which is impossible for an s state
[4, 5].

A couple of difficulties arise when equation (1) is considered as compared with
equation (2):

(i) The solutions of equation (1) are required on R∗, and not only on its positive part R∗
+.

Note that H is invariant under space inversion.
(ii) The arguments used in the three-dimensional case to discard singular solutions of

equation (2) are not valid [6] for the original problem specified by equation (1), and
the imposition of scattering boundary conditions requires them to be included as well.
The standard techniques used for matching the wavefunction at x = 0 require either the
calculation of ψ ′(ε) or of

∫ ε

−ε
V (x) dx and both quantities diverge logarithmically when

ε → 0. One must then cope with ultraviolet divergences, which need to be regularized.

These difficulties lead us to the connection problem, which can be defined as follows: let
us decompose equation (1) into two equivalent coupled equations, one defined on R∗

+ with
Ṽ (x) = λ

x
, the general solutions of which read

ψ+(x) = Af (kx) + Bg(kx), (3a)

and the second defined on R∗
− with Ṽ (x) = − λ

x
, the general solutions of which read

ψ−(x) = af̄ (kx) + bḡ(kx). (3b)

Here, f (x > 0) and f̄ (x < 0) are regular solutions, while g(x > 0) and ḡ(x < 0) are singular
solutions, defined on the appropriate domains; the relations between f, g and f̄ , ḡ will be
clarified later on. The connection problem consists in the calculation of the 2 × 2 matrix
expressing (A,B) in terms of (a, b). Since the derivative of the singular solution diverges at
x = 0, it is impossible to match both ψ and ψ ′ at x = 0. It is also not possible to use the
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method [7, 8] employed in a problem of scattering by a potential V (x) = λδ(x) since the
latter potential is integrable at x = 0,

∫ ε

−ε
V (x) dx = λ, whereas the Coulomb potential is

not. Apparently, the connection problem cannot be solved in terms of simple linear relations,
and one needs to consider bilinear constraints (an example of such a constraint is the current
conservation J (0−) = J (O+) around x = 0).

Our first task is to properly formulate and solve the scattering problem, corresponding
to e > 0. To carry this out, we use two independent regularization methods. One is based
on bilinear constraints, which can be formulated in such a way that ultraviolet divergences
are canceled. The other method consists in calculating the exact transmission for a truncated
Coulomb potential Vε, with Vε(x) = 0 for |x| < ε, Vε(x) = λ/|x| for |x| > ε and letting
ε → 0. With both methods, we arrive at the conclusion that the transmission coefficient
vanishes, T = 0. The potential is perfectly reflective. Moreover, this property of total
reflection also holds for the attractive potential (λ < 0), whereas classically the reflection
vanishes; it is a novel manifestation of perfect quantum reflection from an attractive potential.
It is distinct from the standard example of quantum reflection from an infinite attractive
square well: in the latter case, the divergence of

∫
V (x) dx is faster than logarithmic, and the

corresponding spectrum is not bounded from below.
Our second goal is to calculate bound state energies and wavefunctions for an attractive

potential (λ < 0) (the one-dimensional ‘hydrogen atom’ problem). The ensuing discrete part
of the spectrum (e < 0) appears to be rather intriguing, as it is composed of two interlacing
spectra. The first one (reported also in [1]4) is the usual Rydberg spectrum, with energies
En = −E0

n2 , with n = 1, 2, . . . The corresponding wavefunctions are the regular solutions of
the differential equation (1). The energies of the second part of the spectrum are shifted from
the first one through n → n+1/2, that is, Ẽn = − E0

(n+ 1
2 )2 , with n = 0, 1, . . . The corresponding

wavefunctions will be referred to as anomalous states, and are constructed in terms of the
singular solutions of equation (1). These solutions are square integrable but not orthogonal.
A proper incorporation of such states might require further insight into the basic principles of
quantum mechanics.

We organize the rest of the paper as follows: In section 2, we will first study the
scattering problem, and then explain, in section 3, the two regularization methods used to
solve the connection problem. The bound state problem will be analyzed in section 4, where
regular and anomalous states are introduced. Finally, a short discussion of our results is
carried out in section 5. Calculations requiring technical manipulations are collected in the
appendices.

2. The scattering problem

2.1. Scattering states

2.1.1. Basic solutions. For the scattering problem, we have e > 0 in equation (1). It is
convenient to recast equation (1) so that all quantities are dimensionless. Let k = √

e, u = kx,

η = λ/(2k) = qq ′
4πεoh̄

√
m
2E

and ϕ(u) = ψ
(

u
k

)
. Then the equation for ϕ is

−d2ϕ

du2
(u) + 2

η

|u|ϕ(u) = ϕ(u), u ∈ R∗, (4)

with regular and singular solutions fη(u) and gη(u). Equation (4) is equivalent to the following
couple of equations:

4 It is not clear why the analytic continuation avoiding zero did not give all solutions.

3



J. Phys. A: Math. Theor. 42 (2009) 285302 G Abramovici and Y Avishai

−d2ϕ

du2
(u) + 2

η

u
ϕ(u) = ϕ(u) for u > 0; (5a)

−d2ϕ

du2
(u) − 2

η

u
ϕ(u) = ϕ(u) for u < 0. (5b)

The solutions of equation (5a) are known as Coulomb s wavefunctions [2, 9] with L = 0. We
will write Fη(u) for the regular solution and Gη(u) for the singular (logarithmic) one:

Fη(u) = Cηu e−ı̇ıuM(1 − ı̇ıη, 2, 2ı̇ıu); (6a)

Gη(u) = Re

(
2η

u e−ı̇ıu�(−ı̇ıη)

Cη

U(1 − ı̇ıη, 2, 2ı̇ıu)

)
= 2η

u e−ı̇ıu�(−ı̇ıη)

Cη

U(1 − ı̇ıη, 2, 2ı̇ıu) − ı̇ı(−1 + πη + 2ιη)Fη(u)
/
C2

η, (6b)

where

Cη = e− πη

2

√
πη

sinh(πη)
and ιη = η Im(�(1 − ı̇ıη)).

In these equations, M is the regular confluent hypergeometric function, also written as 1F1,
and U is the logarithmic (also called irregular) confluent hypergeometric function5. Both
Fη and Gη are real. Thus, the solutions of equation (4) for u > 0 are fη(u) = Fη(u) and
gη(u) = Gη(u),∀ η.

Consider now the domain u < 0. In principle, finding the solutions of equation (5b) can
be achieved by direct continuation of Fη(u) and Gη(u). Practically, this requires some care,
especially for Gη. Fη can be continued analytically since it is regular at u = 0, while for
Gη(u) one has to avoid the divergence of G′

η at u = 0. Since (5a) is valid for any sign of η, we
simply need to change η → −η in the previous expressions, to get the solutions of (5b), thus
we get fη(u) = F−η(u) and gη(u) = G−η(u) ∀u < 0 and ∀ η. It should be pointed out that in
the imaginary part of (6b), the factor before Fη does not follow the η → −η transformation6.
The right expression is (note that C−η = eπηCη), ∀u < 0,

gη(u) = −2η
u e−ı̇ıu�(ı̇ıη)

C−η

U(1 + ı̇ıη, 2, 2ı̇ıu) − ı̇ı(−1 + πη + 2ιη)F−η(u)
/
C2

−η. (6c)

One should also note that relations (14.1.14)–(14.1.20) of [9] extend for ρ < 0 as soon as one
replaces log(2ρ) by log(−2ρ) in (14.1.14).

Basic solutions fη(u) and gη(u) are defined on R∗ and shown in figure 1. These solutions
are constructed so that equations (5a) and (5b) are satisfied for both u > 0 and u < 0, yet
the matching condition at u = 0 is not addressed. This will be carried out when we solve the
connection problem.

2.1.2. The general solution. Having defined the basic solutions, we can now form the
general solution as a linear combination of fη(u) and gη(u), on each side of u = 0. We use
expressions (3a) for u > 0 and (3b) for u < 0. Now, the relation between f and f̄ and that
between g and ḡ are well established, so that the bar can be omitted. With these notations, the
general solution is written

ϕ(u, η) =
{
Afη(u) + Bgη(u) for u > 0;
afη(u) + bgη(u) for u < 0.

(7)

5 Note that relation (13.1.3) in [9] fails here so one should use instead (13.1.6).
6 The origin of which we did not elucidate.
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Figure 1. fη (full line) and gη (dashed line) for η = 1/5.

The linearity of the Schrödinger equation implies that the connection problem eventually
reduces to finding the 2 × 2 matrix D, which obeys(

A

B

)
= D

(
a

b

)
with det(D) �= 0. (8)

2.1.3. The transfer matrix. It should be stressed that D is not the transfer matrix T because
T transforms incoming and outgoing (distorted) plane waves at u → −∞ to those at u → ∞.
In order to identify these asymptotic waves, we need first to examine the asymptotic behavior
of the function ϕ(u, η) when u → ±∞.

The asymptotic behaviors of Fη(u) and Gη(u) for u → +∞ were established a long time
ago in [2]:

Fη(u) =
(

1 +
η

2u
+

5η2 − η4

8u2
+ · · ·
)

sin(u − �η(u))

+

(
η2

2u
− 2η − 4η3

8u2
· · ·
)

cos(u − �η(u))
ũ→∞ sin(u − �η(u)); (9a)

Gη(u) =
(

1 +
η

2u
+

5η2 − η4

8u2
+ · · ·
)

cos(u − �η(u))

−
(

η2

2u
− 2η − 4η3

8u2
+ · · ·
)

sin(u − �η(u))
ũ→∞ cos(u − �η(u)); (9b)

with

�η(u) = η log(2u) − arg[�(1 + ı̇ıη)]. (10)

Derivation of the asymptotic behaviors of Fη(u) and Gη(u) for u → −∞ is more subtle.
Their determination in (6c) and (6d) of [1] is to be reconsidered7. In appendix A, we find

Fη(u) = e−πη

(
1 +

η

2u
+

5η2 − η4

8u2
+ · · ·
)

sin(u − �η(u))

+ e−πη

(
η2

2u
− 2η − 4η3

8u2
+ · · ·
)

cos(u − �η(u))
ũ→−∞ e−πη sin(u − �η(u)); (11a)

7 We believe there is a mistake in the analysis in section after relation (A18) of [1].
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Gη(u) = eπη

(
1 +

η

2u
+

5η2 − η4

8u2
+ · · ·
)

cos(u − �η(u))

− eπη

(
η2

2u
− 2η − 4η3

8u2
+ · · ·
)

sin(u − �η(u))
ũ→−∞ eπη cos(u − �η(u)). (11b)

Thus, the asymptotic form of the solution ϕ(u, η) is

ϕ(u, η)
ũ→∞ A sin(u − �η(u)) + B cos(u − �η(u))

= B − ı̇ıA

2
eı̇ı(u−�η(u)) +

B + ı̇ıA

2
eı̇ı(�η(u)−u); (12a)

ϕ(u, η)
ũ→−∞ a eπη sin(u + �η(u)) + b e−πη cos(u + �η(u))

= b e−πη − ı̇ıa eπη

2
eı̇ı(u+�η(u)) +

b e−πη + ı̇ıa eπη

2
e−ı̇ı(�η(u)+u). (12b)

The transfer matrix T relates the coefficients of the distorted plane waves at u → ∞ with
those at u → −∞:(

B − ı̇ıA
B + ı̇ıA

)
= T
(

b e−πη − ı̇ıa eπη

b e−πη + ı̇ıa eπη

)
. (13)

The solution of the scattering problem is equivalent to the elucidation of the transfer matrix.

2.2. Scattering

2.2.1. Transmission and reflection amplitudes. Alternatively, we define transmission t and
reflection r amplitudes in terms of a wave ϕα propagating from −∞(α = L), or from
∞(α = R). Explicitly,

ϕL(u, η)

{
ũ→−∞ eı̇ı(u+�η(u)) + rL e−ı̇ı(u+�η(u));
ũ→∞ tL eı̇ı(u−�η(u));

and

ϕR(u, η)

{
ũ→∞ e−ı̇ı(u−�η(u)) + rR eı̇ı(u−�η(u));
ũ→−∞ tR e−ı̇ı(u+�η(u)).

Time reversal invariance implies tR = tL ≡ t and reflection symmetry H(−x) = H(x)

implies rR = rL ≡ r (to demonstrate it properly, one must note that, if ϕ(u, η) is a solution,
ϕ(−u, η) is another solution, a priori independent of the first one). Some useful relations
expressing A,B, a, b in terms of t, r are given in appendix B.

The corresponding transmission and reflection coefficients are

T = |t |2, R = |r|2, (14)

and fulfil R + T = 1 (see equation (B.2a)). For t �= 0, it is instructive to express the ratio of
some coefficients a,A in terms of T, once for ϕL, and once for ϕR (see appendix B):

aL eπη

AL
= ε′ − 2ı̇ıε

√
1

T
− 1 ⇒

∣∣∣∣aL eπη

AL

∣∣∣∣ =
√

4

T
− 3 � 1;

aR eπη

AR
= 1

ε′ − 2ı̇ıε
√

1
T

− 1
⇒
∣∣∣∣aR eπη

AR

∣∣∣∣ = 1√
4
T

− 3
� 1;

these inequalities become equalities only for T = 1. This proves that the symmetry between
the regular and the singular part of a wavefunction ϕ which occurs at x = ±∞ is broken at
x = 0 and that connection relations are not trivial (except for T = 1 and also the special case
T = 0).

6
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2.2.2. The S matrix. The S matrix is related [10, 11] to T and R and is written as

S =
(

r t

t r

)
. (15)

Using the unitarity of the S matrix, it is useful to parametrize its elements in terms of the
transmission coefficient T and a couple of two independent numbers ε, ε′ = ±1. First, we get
the parametrization of all coefficients AL, . . . , bR, which we give in appendix B. Then, we can
prove the representation

S =
(

T − 1 + ı̇ıεε′√T − T 2 ε′T + ı̇ıε
√

T − T 2

ε′T + ı̇ıε
√

T − T 2 T − 1 + ı̇ıεε′√T − T 2

)
(16)

which is unitary, as required. We stress that this representation is not universal8, namely, it is
peculiar to the Coulomb scattering problem as discussed here.

We are now in a position to examine the connection problem.

3. The connection problem

The connection problem is to relate A,B to a, b either by finding matrix D in equation (8), or,
equivalently, transfer matrix T in equation (13), or, equivalently, the S matrix in equation (15).
Since ∂ϕ

∂u
diverges as u → 0, it is not legitimate to use the continuity of ϕ and ∂ϕ

∂u
at u = 0.

Thus, the issue of the connection problem cannot be handled in solving linear equations of
the wavefunction, and one must address bilinear relations, related either to conservation laws
or to certain constraints. In the following analysis, the behaviors of fη(u), gη(u) and of their
derivatives, for u ∼ 0, are required: they are studied in appendix C.

3.1. Conservation laws and other constraints

3.1.1. Continuity of ρη. The simplest physical relation that provides a connection at x = 0
is the continuity of the density of probability ρη(u) = |ϕ(u, η)|2. With relations (C.1a) and
(C.1b), one obtains

|B|2 eπη = |b|2 e−πη ⇐⇒
∣∣∣∣Bb
∣∣∣∣ = e−πη. (17a)

In appendix B, we show that this relation actually simplifies as

B = ε′ e−πηb, (17b)

where ε′ = ±1 (note that the case ε′ = −1 implies a violation of the continuity of ψ).

3.1.2. Current conservation. The conservation of current j (x) = −Re
(
ı̇ıψ(x)

dψ

dx (x)
)

is
equivalent to the unitarity of the S matrix which is already verified. Therefore, it does not help
for the resolution of the connection problem.

8 The representation of (15) (matrix S), (19) (orthogonality constraints) and (21) (Hermiticity constraints) in terms
of coefficients T (η) is peculiar for the Coulomb problem discussed here, and is not valid for any one-dimensional
scattering problem.

7
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3.1.3. Orthonormality of scattering states. Since the complete set of scattering
wavefunctions is known, it is in principle possible to examine the consequence of generalized
orthogonality relations. Let us write ψ(x,E, α) = ϕα

(
kx, λ

2k

)
with α = R, L (wavefunctions

coming from +∞ or −∞ have degenerate energies),∫
dxψ(x,E1, α1)ψ(x,E2, α2) = δ(k1 − k2)Pα1α2 , (18)

where P is an unitary 2 × 2 matrix in the (R,L) space.
In appendix D, using relations (B.5a), (B.5b), (B.5c), (B.5d), (B.5e), (B.5f ), (B.5g),

(B.5h), (12a) and (12b), we calculate9

lim
L→∞

∫ L

−L

ψ(x,E1, α1)ψ(x,E2, α2) dx =
[(

1+

√
R(η2)T (η1)−

√
R(η1)T (η2)

2
Zεε′(1+ı̇ı)

)
× δ(k1 − k2) +

(
−R(η1) + R(η2)

2
+ εε′

√
R(η1)T (η1) +

√
R(η2)T (η2)

2

+ ı̇ı

(
T (η1) − T (η2)

2
− εε′

√
R(η1)T (η1) − √

R(η2)T (η2)

2

))
δ(k1 + k2) + c

]
δα1α2 ,

(19)

where c is a constant and Z is a complex number given by

Z =
√

R(η1)R(η2) +
√

T (η1)T (η2) + ı̇ıεε′(
√

R(η2)T (η1) −
√

T (η2)R(η1)). (20)

Since k1, k2 > 0 here, we can drop δ(k1 + k2) in equation (19), which is irrelevant10. The
established result in equation (19) that P = I2 reflects the orthogonality of left and right
moving states. Scattering states can be orthonormalized in the extended sense if and only if
(
√

R(η2)T (η1) − √
R(η1)T (η2))Z = 0. This yields T (η1) = T (η2) or T (ηi) ∈ {0, 1}. The

second condition is actually a particular case of the first one, since otherwise, one could find
some energy E such that T (η+) = 1 − T (η−), which induces a non-physical discontinuity;
however, this argument will not be needed in the following. Having T independent of E
is already a very strong result (see footnote 8). Yet, in order to completely elucidate the
connection problem, we will now address another constraint.

3.1.4. Hermiticity of the Hamiltonian. A successful issue for the connection problem is
given by analyzing the Hermiticity of the Hamiltonian H. For E1 �= E2, we consider two
wavefunctions ψ1: x �→ ψ(x,E1) and ψ2: x �→ ψ(x,E2) (degeneracy is not relevant here,
and R,L indices can be omitted). Since H is the Hermitian, the Hermitian product of |ψ1〉
with H |ψ2〉 must be conjugate with the Hermitian product of |ψ2〉 with H |ψ1〉. Explicitly,∫

dxψ(x,E1)

[
−∂2ψ

∂x2
(x, E2) +

λ

|x|ψ(x,E2)

]
=
∫

dx

[
−∂2ψ

∂x2
(x, E1) +

λ

|x|ψ(x,E1)

]
ψ(x,E2)

⇐⇒
∫

dxψ(x,E1)
∂2ψ

∂x2
(x, E2) − ∂2ψ

∂x2
(x, E1)ψ(x,E2) = 0,

9 The essential Coulomb properties are implicitly contained in these relations.
10 More precisely, δ(k1 +k2) only contribute to ψ(x, 0), which is not an important matter here. It is however interesting
to note that the complete weight of this state, within T = 0, is found to be zero, which is exact.
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so that [
−ψ(x,E1)

∂ψ

∂x
(x,E2) +

∂ψ

∂x
(x,E1)ψ(x,E2)

]∞
−∞

= 0. (21)

In equation (21), we calculate the Cauchy principal value of the left term, which is written, in
terms of dimensionless variables and function ϕ, as

lim
L→∞

λ

2

[
−ϕ(u, η1)

η2

∂ϕ

∂u
(u, η2) +

∂ϕ

∂u
(u, η1)

ϕ(u, η2)

η1

]L
−L

. (22a)

Since −ϕ(u, η1)
∂ϕ

∂u
(u, η2) + ∂ϕ

∂u
(u, η1)ϕ(u, η2) is divergent at u = 0, one must use regularized

integral around zero. Hence one should add the Cauchy principal value:

lim
ε→0+

λ

2

[
ϕ(u, η1)

η2

∂ϕ

∂u
(u, η2) − ∂ϕ

∂u
(u, η1)

ϕ(u, η2)

η1

]ε
−ε

(22b)

and equation (21) is written as (22a) + (22b) = 0. The contribution (22a) is found to vanish
when L → ∞ (detailed calculations, using relations (12a), (B.5e), (B.5f ), (B.5g), (B.5h),
are given in appendix E) so the net expression of equation (21) is determined by (22b) which
yields

0 = Z
{
εε′
(

Cη1

η1Cη2

√
R(η1)T (η2) − Cη2

η2Cη1

√
T (η1)R(η2)

)
+

2

Cη1Cη2

Re(�(1+ı̇ıη2) − �(1+ı̇ıη1))
√

T (η1)T (η2)

}
.

Employing relations (B.5a), (B.5b), (B.5c), (B.5d), we get the very same equation. Note
that h1(η1, η2) ≡ Cη1

Cη2
, h2(η1, η2) ≡ Cη2

Cη1
and h3(η1, η2) ≡ 1

Cη1 Cη2
are independent two-variable

functions. Indeed, let as assume a linear combination

γ1h1 + γ2h2 + γ3h3 = 0. (23)

Since
√

x
sinh(x)

and
√

sinh(x)

x
are one-variable independent functions, if one keeps η2 constant

and considers equation (23) as an equation of variable η1, one gets γ1 = 0; if one keeps η1

constant and considers equation (23) as an equation of variable η2, one gets γ2 = 0; thus,
γ3 = 0 and the independence of the three functions is proved. Now Z , defined in (20), can
never vanish. Hence one obtains

R(η1)T (η2) = 0; T (η1)R(η2) = 0; T (η1)T (η2) = 0.

The first two equations imply T = 0, 1, and the last one simply implies T = 0. This eventually
proves (see footnote 8) that, indeed, T (η) = 0.

3.2. Regularization by truncation of the potential

Here we propose another approach, which gives the same result: the divergences are
regularized by a truncation of the potential.

3.2.1. Truncated half-potential. In order to avoid the use of Coulomb wavefunctions for
negative argument we calculate transmission and reflection amplitudes for a right half-barrier,
defined for x > 0, and then use reflection symmetry to calculate them for a mirror symmetric

9
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Figure 2. Right-half-truncated potential (24) and wavefunction in the two regions following
equation (26).

barrier, defined for x < 0. Then left and right barriers are combined using a composition
formula for the S matrix, as suggested for instance in [12].

The truncated right half-potential is, see figure 2,

Vε(x) =
⎧⎨⎩

0 for x � ε;
λ

x
for x > ε,

(24)

and the Schrödinger equation with Vε(x) alone is written as − d2ψ(x)

dx2 + Vε(x)ψ(x) = k2ψ(x).
In order to avoid the 1/|x| singularity, the potential is assumed to be zero for 0 < x < ε,

but we have also performed our calculations with Vε(x < ε) = λ
ε
, with no significant changes.

The cutoff parameter ε > 0 is assumed small, and eventually the limit ε → 0 is taken on the
sum of left and right barriers, which corresponds to the complete Coulomb potential, since

2m

h̄2 V (x) = lim
ε→0

Vε(x) + Vε(−x). (25)

To calculate transmission and reflection amplitudes for the right barrier consider a plane
wave approaching the potential Vε from −∞. It is partially reflected by the barrier at x = ε,
and the transmitted wave is a Coulomb wave tHη, with Hη(u) = Fη(u) + ı̇ıGη(u). Its
asymptotic behavior is

Hη(u)
ũ→∞ eı̇ı(u−�η(u)).

The scattering boundary conditions for the wave function are (see figure 2)

ψ(x) =
{

eı̇ık(x−ε) + r e−ı̇ık(x−ε) for x � ε,

tHη(kx) for x > ε.
(26)

We want to calculate reflection and transmission amplitudes r and t for this right-half
truncated Coulomb barrier Vε(x). Matching at x = ε yields

1 + r = tHη(kε), 1 − r = −ı̇ıtḢ η(kε),

where Ḣ stands for dH/du, and thus

t = 2

Hη(kε) − ı̇ıḢ η(kε)
; r = Hη(kε) + ı̇ıḢ η(kε)

Hη(kε) − ı̇ıḢ η(kε)
. (27)

10
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Figure 3. Truncated potential for η = 1, λ = 1 and ε = 1.

In the limit ε → 0, this implies

t → 0, r → −1.

However, the limit ε → 0 will not be taken here, but rather, at a later step.
So far, we have considered transmission and reflection from the potential Vε(x) where

the incoming wave approaches the barrier from the left region. If the wave were to have
come from the right, been partially transmitted to the left and partially reflected back to the
right, the transmission amplitude would be the same, but the reflection would have a different
phase. However, when we combine the symmetric image of Vε(x) in order to account for
the Coulomb problem as asserted in equation (25), we employ the reflection amplitude r, as a
result of the analysis developed in [12]. This procedure of combining the two barriers should
be used before the limit ε → 0 is taken on equations (27). The transmission amplitude through
the combined barrier Vε(x) + Vε(−x) is

Tε = t2

1 − e2ı̇ıkεr2

= 4

(1 − e2ı̇ıkε)[Hη(kε)2 − Ḣ η(kε)2)] − 2ı̇ı(1 + e2ı̇ıkε)Hη(kε)Ḣ η(kε)
. (28)

This formula is exact and expresses the transmission amplitude for a symmetric combination
of cutoff Coulomb barriers with a hole between −ε and ε. It uses Coulomb wavefunctions
solely with positive argument. Inspecting the two terms of the denominator in equation (28),
the first term is found to vanish in the limit ε → 0, and hence

Tε ≈ ı̇ı

Hη(kε)Ḣ η(kε)
−→
ε→0

0.

The upshot is that transmission coefficient of combined left and right barriers, which comprise
the Coulomb barrier as ε → 0, vanishes, that is T = limε→0 Tε = 0.

3.2.2. A second form of the truncated potential. We also considered a truncated potential
Vε, represented in figure 3 and defined as follows: ε > 0 and ∀ |x| � ε, Vε(x) = λ

ε
,∀ |x| > ε,

Vε(x) = λ
|x| .

The transmission Tε can again be exactly calculated (the wavefunction ψ corresponding
to given (E, ε) and its derivative ψ ′ are continuous; we use first-order Taylor expansion for
the Coulomb wavefunctions at connection points x = ±ε).

11
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Figure 4. Transmission Tε versus ε in the repulsive (plain line) or attractive (dashed line) case.

One finds in figure 4 the curves of Tε versus ε, for repulsive or attractive cases.
We see that the transmission Tε → 0 as ε → 0. This confirms our analytical result.

We must clarify that for some points of these figures, we used about 1000 digit precision
calculation, provided by a formal calculation with integers.

4. The discrete spectrum: bound states

We come now to the case of an attractive potential, and look for bound states of negative
energies. As is shown below, analytical expressions can be obtained for the energies as well
as for the wavefunctions11.

4.1. Analytical solutions

For e < 0, equation (4) is modified so that its right term is written as −ϕ(u) instead of ϕ(u).
Note that u = kx holds but now k = √−e, since, for an attractive potential, η < 0. We will
again consider separately u > 0 and u < 0, and hence get the corresponding two equations:

−d2ϕ

du2
(u) + 2

η

u
ϕ(u) = −ϕ(u) for u > 0; (29a)

−d2ϕ

du2
(u) − 2

η

u
ϕ(u) = −ϕ(u) for u < 0. (29b)

In order to solve equation (29a), we need to generalize equations (14.1.6), (14.1.14),
(14.1.18), (14.1.19) and (14.1.20) of [9] (for L = 0). This is carried out in appendix G.
Generalization of (14.1.3) in [9] is given below; relations (14.1.4), (14.1.5), (14.1.15), (14.1.17)
remain valid by construction. Incidentally, the results of appendix G can be regarded as a
hyperbolic version of the original relations in [9], since the solutions of equation (29a) now
read:

Jη(u) ≡ u e−uM(1 + η, 2, 2u), Kη(u) ≡ 2u e−uU(1 + η, 2, 2u).

11 Mineev claims that it had already been solved many times, but gives no references, except [3], which does not give
many details.
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In analogy with the case of free states, the functions J−η and K−η are solutions of (29b) (the
connection problem at u = 0 will be elucidated later on). A useful identity, which will be
needed, is

J−η(u) = −Jη(−u). (30)

4.2. Quantization

For an arbitrary value of η, the solutions Jη(u) and Kη(u) of equation (29a) diverge as u → ∞
and the solutions J−η(u) and K−η(u) of equation (29b) diverge as u → −∞. This is true
for almost all values of η, which therefore should be discarded as non-physical, except for
a set of quantized values ηn (equivalently en or En) such that Jη(u > 0) and J−η(u < 0)

are both square integrable, and for another set of values η̃n (equivalently ẽn or Ẽn) such that
Kη(u > 0) and K−η(u < 0) are both square integrable. The complete spectrum, which is
described below, is composed of the union of set {En}, which is exactly Rydberg’s spectrum,
and set {Ẽn}, the existence of which is indeed a surprise.

4.2.1. The regular solutions. Following the analysis of the hydrogen-like atoms, it is verified
that regular solutions Jη(u) and J−η(u) decay exponentially as u → ±∞ only for a discrete
set {ηn,∀ n ∈ N�} given by

η = ηn ≡ −n ⇐⇒ E = En ≡ − (qq ′)2m

2(4πεo)2h̄2n2
. (31)

The corresponding energies En form the Rydberg spectrum of hydrogen-like atoms. In
particular, the lowest energy is E1 = − (qq ′)2m

2(4πεo)2h̄2 = −ZZ′EI , where EI is the Rydberg
energy.

The question whether the set ηn defined above can be used also for the singular solutions
is answered negatively, although the demonstration is not immediate. While K−ηn

(u) diverges
as u → −∞,Kηn

(u) does not diverge as u → ∞. Therefore, one may consider a mixed
solution AJηn

+ BKηn
for u > 0 and aJ−ηn

for u < 0. However, as we shall see immediately
below, Jηn

(0) = J−ηn
(0) = 0, while K−n(0+) = 1/C−ηn

. Hence the continuity of the density
ρ at x = 0 implies here |B| = 0, which proves that a combination of regular and singular
solutions is not an eigenstate.

So far we have asserted the exponential decay of J±ηn
as u → ±∞. The complete

regular solutions ∀ n ∈ N∗ can be constructed as ζn(u) = Jηn
(u)∀u > 0 and ζn(u) =

−μJηn
(−u)∀u < 0, with μ ∈ C, (due to equation (30) and the reflection symmetry between

equations (29a) and (29b)). Explicitly (cf equation (13.6.9) of [9]),

ζn(u) = −u

n
e−|u|L′

n(2|u|)
{

1 for u > 0,

μ for u < 0,
(32)

where Ln(z) is the Laguerre polynomial of order n, and L′
n(z) = dLn(z)

dz
. It will be shown

below that μ = ±1.
The orthogonality and normalization of the corresponding wavefunctions ψ(x,En) =

ζn(
λx
2ηn

) = ζn(
|λ|x
2n

) can be inspected by carrying out integration on the positive semi-axis R+.
Thus, for the normalization we have∫ ∞

0
dx|ψ(x,En)|2 =

∫ ∞

0
dx|ζn(kx)|2 = 1

k

∫ ∞

0
du|ζn(u)|2 = 2n

|λ|
n

4
= n2

2|λ| ;

13
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which, with |μ| = 1, requires a normalization factor equal to
√|λ|

n
; while for the orthogonality

we find ∫ ∞

0
dx ψ(x,En)ψ(x,En′) =

∫ ∞

0
dx ζn

( |λ|x
2n

)
ζn′

( |λ|x
2n′

)
= 0 ∀ n �= n′,

due to orthogonality relations between Laguerre polynomials.

4.2.2. Anomalous solutions. Quite remarkably, the anomalous solutions Kη(u) and K−η(u)

both decay exponentially as u → ±∞ only for a discrete set {η̃n,∀ n ∈ N} given by

η = η̃n = −n − 1

2
⇐⇒ E = Ẽn ≡ En+ 1

2
= − (qq ′)2m

2(4πεo)2h̄2
(
n + 1

2

)2 , (33)

where En is that of equation (31). The corresponding energies Ẽn form a separate spectrum
interlacing the Rydberg one. From equation (33), one notes that Ẽn = p2

(n+ 1
2 )2 Ep,∀p ∈ N∗,

so that the minimum Ẽ0 is lower than E1 by a factor of 4.
Note that, for η �= η̃n,K−η(u) diverges exponentially for u → −∞, while Kη(u) does not

diverge for u → ∞. Therefore, one should examine the possibility of a continuous spectrum,
by constructing a solution AKη(u) for u > 0 and zero for u < 0 for any such η �= η̃n; however,
one can calculate Kη(0+) = 1/Cη �= 0 for all η < 0, so the continuity of the density ρ at
x = 0 implies A = 0. This possibility is eventually discarded.

So far we have asserted the exponential decay of K±η̃n
as u → ±∞. In order to construct

the complete anomalous solutions, one needs to examine first the properties of K−η̃n
(u) for

u < 0 and n ∈ N. The imaginary part is written as

�(K−η̃n
(u)) =

√
π

γn

Jη̃n
(u) with γn = (2n − 1)!!/2n+1;

while, for the real part, there is a relation analogous to (30):

Kη̃n
(−u) − ı̇ı

√
π

γn

Jη̃n
(−u) = νnK−η̃n

(u) ∀u > 0, (34)

where νn = 22n+1/((2n + 1)(2n − 1)!!)2): Kη̃n
has even parity (whereas Jηn

has odd parity) if
one omits the rescaling factor νn.

The complete anomalous solutions ∀ n ∈ N can then be defined as ξn(u) = Kη̃n
(u) for

u > 0 and ξn(u) = νKη̃n
(−u) for u < 0, due to equation (34) and the reflection symmetry

between equations (29a) and (29b). It is not necessary to include the factor νn here, since it is
accounted for by the coefficient ν. The latter will be shown below to be ν = ±1. In appendix
H, we prove that the anomalous solutions are explicitly given by

ξn(u) = (pn(|u|)K0(|u|) + qn(|u|)K1(|u|)) |u|
(−2)n

√
π

×
{

1 for u > 0,

ν for u < 0,
(35)

where polynomials pn(x) and qn(x) follow recurrence equations (H.3a) and (H.3b), and Kn are
the Bessel functions of the second kind. For instance, p0 = q0 = 1, p1(x) = 3 − 4x, q1(x) =
1 − 4x, p2(x) = 4x(4x − 9) + 15 and p2(x) = 4x(4x − 7) + 3 (more generally, these
polynomials are proved to be real with integer coefficients in appendix H).

As for determining the constant ν, contrary to the regular case, ξn(0) �= 0. Hence, from
the continuity of the density ρ, we deduce that

|ξn(0
−)| = |ξn(0

+)|
in analogy with equation (17a). This implies ν = ±1 (we study real solutions). Thus, the
anomalous solution ξn is even for ν = 1 and odd for ν = −1.

14
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Similarly to the case of regular solutions, the orthogonality and normalization of the
corresponding wavefunctions ψ(x, Ẽn) = ξn

(
λx
2η̃n

) = ξn

( |λ|x
2n+1

)
can be inspected by carrying

out integration on the positive semi-axis R+. Thus, for the normalization we have∫ ∞

0
dx|ψ(x, Ẽn)|2 =

∫ ∞

0
dx|ξn(kx)|2 = 1

k

∫ ∞

0
du|ξn(u)|2 = 1

|λ|
(

(2n + 1)βn

22n+2π
+

νnπ

2n+3

)
.

The first coefficients βn can easily be computed, β0 = 3, β1 = 41, β2 = 1063. For large
n, βn ∼ 5(2n + 1)!!. Since we proved ν = ±1, one can deduce the exact normalization factor.

Strikingly, the anomalous solutions are not orthogonal to each other. As a counter
example, consider three Hermitian products between anomalous states ξn and ξp with
(n, p) = (0, 1), (0, 2) and (1, 2), on the semi-axis R+:∫ ∞

0
dxψ(x, Ẽ0)ψ(x, Ẽ1) =

∫ ∞

0
dxξ0(|λ|x)ξ1

( |λ|x
3

)
= 2

|λ|

(
3

8π
− 9
(
E(−8) − 3E

(
8
9

)− 3K(−8) + K
(

8
9

))
+ 3 ln(729)

64

)

� 2

|λ|0.021 0133∫ ∞

0
dxψ(x, Ẽ0)ψ(x, Ẽ2) =

∫ ∞

0
dxξ0(|λ|x)ξ2

( |λ|x
5

)
= 2

|λ|
(

− 35

48π

+
175
(
E(−24) − 5E

(
24
25

)− 4K(−24) + 4
5K
(

24
25

))
+ 27 ln(5)

1728

)

� − 2

|λ|0.031 9898∫ ∞

0
dxψ(x, Ẽ1)ψ(x, Ẽ2) =

∫ ∞

0
dxξ1

( |λ|x
3

)
ξ2

( |λ|x
5

)
= 2

|λ|

(
45

32π
− 45
(
2705
(
3E
(− 16

9

)− 5E
(

16
25

))− 2877
(
5K
(− 16

9

)− 3K
(

16
25

))
+ 15 ln(729)

)
256

)

� 2

|λ|0.018 8906,

where K is the complete elliptic integral of the first kind and E is the complete elliptic integral
of the second kind. It might be argued that these integrals were calculated on the semi-axis
R+, while the Hermitian product should be calculated on R and might vanish by symmetry
cancellation (in the case of odd parity, integrals on R+ and on R− have opposite sign). However,
since we have already proved that all anomalous wave functions are either even or odd, then
out of the three states (ξ0, ξ1, ξ2), two have necessarily the same parity; thus, the corresponding
scalar product is nonzero, and these solutions are not orthogonal to each other.

This is a surprising result that requires more insight into the properties of wavefunctions
in quantum mechanics, which we will discuss briefly afterward.

4.2.3. Orthogonality between regular and anomalous solutions. Regular and anomalous
solutions have different energies so they are expected to be mutually orthogonal as well (see
also the discussion below).
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Figure 5. ζ1 (red, full line), ζ3 (purple, dashed line), ξ0 (blue, dotted line) and ξ2 (green, dot-dashed
line).

Performing the Hermitian product on the semi-axis R+ of ψ(x,En) = ζn

( |λ|x
2n

)
with

ψ(x, Ẽp) = ξp

( |λ|x
2p+1

)
yields a nonzero result. For instance,∫ ∞

0
dxψ(x, Ẽ0)ψ(x,E1) =

∫ ∞

0
dxξ0(|λ|x)ζ1

( |λ|x
2

)
= 2

3
√

π |λ| ;

similar expressions can be obtained for all n ∈ N∗ and p ∈ N, they can all be written as
r/(q

√
π |λ|), with integers r and q depending on p and n. Thus, orthogonality between regular

and anomalous wavefunctions can be assured only by symmetry cancellation of the right part
of the Hermitian product (on R+) with its left part (on R−).

This leads to the following constraints: first, like the anomalous solutions, all regular
solutions must have a definite parity. This is satisfied for μ = ±1. Second, all regular
solutions must have the same parity, and all anomalous solutions must have the other
parity. This means μ = ν is fixed. There remains a global choice of sign; either one
chooses all regular solutions to be odd and all anomalous solutions to be even or vice
versa.

While we have no rigorous argument for either case, one notes that the choice μ = ν = 1
implies that ζn, ζ

′
n and ξn are continuous. This seems to us the natural choice. Consequently,

regular solutions ζn are odd and anomalous solutions ξn are even. The first few solutions
are shown in figure 5. With this choice, all solutions are continuous at u = 0, whereas the
first and second derivative of ξn are infinite at u = 0 (this point is actually a ramification
point).

5. Discussion

Despite its apparent simplicity, this one-dimensional problem leads to many interesting results,
some of them are unexpected. Concerning anomalous bound states, it requires further insight
into the interpretation of quantum mechanics, as will be briefly discussed below.

5.1. Zero transmission through the barrier

The fact that T = 0 for a repulsive infinite potential is in agreement with classical mechanics.
In contrast, for an attractive potential, it contradicts classical mechanics. An example of
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pure reflection, which is called quantum reflection, is provided by the infinite square well
potential:

V (x) = Vo ×
{

1 for |x| � a,

0 for |x| > a,
Vo → −∞,

where 2a is the width of the well. The Coulomb potential provides us with a new example
of pure reflection. It differs from the infinite square well case by the width, which becomes
narrower as one goes down in energy, and by the divergence of

∫
V (x)dx, which is logarithmic,

while it is faster for the square well potential. Note that both the Coulomb potential and the
infinite square well have an infinite number of bound states at negative energy. However,
while the spectrum of the former is bounded from below, the spectrum of the latter is not. This
is the only example of zero transmission and bounded spectrum that we know of.

As a consequence of T = 0, singular unbound wavefunctions are eventually discarded,
but the demonstration is much more involved than in the three-dimensional case of
equation (2). If one looks back to relations (B.5a), (B.5b), (B.5c), (B.5d), (B.5e), (B.5f ),
(B.5g), (B.5h), one finds that all B and b coefficients cancel: the logarithmic solution is
completely suppressed, and therefore, the probability density is strictly zero at x = 0. In the
case of ψL, it is zero for x � 0; in the case of ψR, it is zero for x � 0; the reflection process
entirely takes place in one half-line. This suppression at x = 0 can be physically interpreted as
a hard-core repulsion. This interpretation also holds for regular bound states, the probability
density of which cancels at x = 0. But it is not the case for anomalous bound states, which
show, here again, a special behavior.

5.2. New representation of the S matrix

We did not insist on the generality of the representation of all integration constants with only
one parameter T. It actually only depends on relations (12a) and (12b) and on the reflection
symmetry of the potential. For any symmetrical potential, one can choose a basis of solutions
(f, g) such that (12a) holds; however, any generalization of relation (17a) may fix the ratio
A/a or B/b so that (12b) will be changed.

With T = 0, one simply obtains S = −I2.

5.3. Non-Hermiticity of H

The non-orthogonality between anomalous bound states implies that H is not perfectly
Hermitian, because it is well established that the eigenstates of an Hermitian operator are
orthogonal. This problem is raised by the same singularity than that, which is calculated in
(22b). Indeed, the quantity �np defined by∫

dxξn

(
x

2n+1

|λ|
)[

−ξ ′′
p

(
x

2p+1

|λ|
)

+
|λ|
|x|ξp

(
x

2p+1

|λ|
)]

−
∫

dx

[
−ξ ′′

n

(
x

2n+1

|λ|
)

+
|λ|
|x|ξn

(
x

2n+1

|λ|
)]

ξp

(
x

2p+1

|λ|
)

= lim
ε→0+

|λ|
[

ξn(u)

2p + 1

dξp

du
(u) − dξn

du
(u)

ξp(u)

2n + 1

]ε
−ε

is not zero, for instance �01 = − 8
3π

,�02 = 28
5π

,�03 = − 116
7π

,�12 = − 4
5π

,�13 = 23
7π

,�23 =
27

14π
, etc.
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Figure 6. P
(N)
1,N versus N.

But the situations are quite different. In the case of the unbound spectrum, eigenstates
must be strictly orthogonal; otherwise, a quantum of a given energy E, coming from the
frontiers of the universe and interacting with the system would not only create particles of the
same energy, but also of other energies, so E becomes blurred; but this blurring would spoil
into the whole universe, which is impossible. So, we have discarded this possibility (proving
therefore T = 0) of a break of the Hermiticity of H.

In contrast, a bound state of energy E may relax into a coherent state, thanks to interacting
overlaps between non-orthogonal eigenstates. Thus, it may be excited into a free state of
different energies, with a certain probability, which we will examine; yet, this mechanism
does not contradict any physical law, and is possible.

Moreover, H is still an observable: its spectrum is real, and canonical quantization theory
is still valid, so a break of Hermiticity restrictedly for E ∈ {Ẽn, n ∈ N} does not yield any
contradiction of quantum mechanics, although it exceeds its standard axiomatic formulation.

5.3.1. Coherent bound states. Anomalous bound states are not orthogonal, so they are not
stable: the spontaneous transition Ẽn → T̃p is allowed, without any interaction term in the
Hamiltonian, which contradicts the standard properties of quantum mechanics. Therefore,
a state of energy Ẽn is not stable. However, the transfer probability between two states of
energies Ẽn and Ẽp is very small and decreases as |Ẽn − Ẽp| is increased, so, anomalous
states are almost stable, and their actual energy is only slightly blurred. In order to calculate
stable states, one simply needs to diagonalize the (infinite) matrix M = (〈ξm|ξn〉)m,n. M is
replaced by the truncated matrix M(N), of size N × N corresponding to 0 � m, n � N − 1,
and we have diagonalized M(N) instead. By chance, the coefficients of M(N) rapidly converge
when N is increased, so we can calculate numerically those of M.

Let P (N) be the corresponding change in the basis matrix. P (N) is indeed close to unity;
we show, in figure 6 the rapid decrease of P

(N)
1,N versus N, in figure 7 the diagonal coefficient

P
(N)
1,1 versus N, and in figure 8 the convergence of P

(N)
1,q versus N, for some values of q (these

coefficients are divided by P
(q)

1,q for convenience). One verifies that the diagonal coefficient
deviation from 1 remains very small, and, correspondingly, that other coefficients are of several
orders smaller.

The stable states that we have calculated are coherent states. Each coherent state can be
labeled by the closest state of energy Ẽn and will be written as ξ̃n. When a state of energy Ẽn

is created, it will relax to ξ̃n. The delay of this relaxation is of the order h̄

�Ẽn
, where �Ẽn is

the uncertainty of Ẽn due to the instability process and can be explicitly calculated.
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Figure 7. M
(N)
1,1 versus N (it is normalized to 1).
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Figure 8. M
(N)
1,1 (red, full line), M

(N)
1,2 (blue, dotted line), M

(N)
1,3 (green, dashed line) and M

(N)

1,5

(yellow, dot-dashed line) versus N (coefficient P
(N)
1,q is divided by P

(q)

1,q to show the relative
convergence).

On the other hand, consider an excited state of energy E = −Ẽp; even if the state was
initially created as ξn with n �= p, the probability of exciting state ξp, although small, is never
zero.

5.3.2. Orthogonality between regular and anomalous states. Finally, we would like to insist
on the orthogonality between regular and anomalous states. Otherwise, spontaneous relaxation
between regular states, En → Ep, might occur, through channel En → Ẽq → Ep, and the
effective overlap between regular states would not be zero.

If one adds, in the Hamiltonian, an interaction term between the regular and anomalous
terms, allowing transitions between them, the exact calculation of transfer probability would
become more complicated, because of the relaxation process.

Eventually, in a real system, one should take into account the dynamical aspect of the
problem, and consider, instead of a coherent state, an intermediate state, which would include
the real dynamical relaxation process. Although it may seem complicated, this opens exciting
fields of research for the future.

6. Conclusion

Simple quantum mechanics can always bring new and surprising results. Indeed, we have
found that the Hermiticity of the Coulomb Hamiltonian may break exclusively for a closed
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family of bound states, which we therefore called anomalous states. These states are not
stable, and one can only observe, instead, coherent states. We have also found a new case of
quantum reflection, by solving the one-dimensional Coulomb problem.
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Appendix A. Asymptotic behavior of Fη and Gη when u → −∞
Here we analyze the asymptotic behavior of Fη(u) and Gη(u) for u → −∞. Our results are
different from those in equations (6c) and (6d) in [1], (see footnote 7).

Let us first demonstrate (11a). First note that

t eı̇ıtM(1 + ı̇ıη, 2,−2ı̇ıu) = t e−ı̇ıtM(1 − ı̇ıη, 2, 2ı̇ıu), (A.1)

but, since it is real, one can omit the conjugation. For u > 0, writing u = |u| and using (9a),
one obtains

|u| e−ı̇ı|u|M(1 − ı̇ıη, 2, 2ı̇ı|u|)|̃u|→+∞ e
πη

2 κη sin(|u| − �η(u)).

For u < 0, writing u = −|u| and using (A.1), one obtains

|u| eı̇ı|u|M(1 + ı̇ıη, 2,−2ı̇ı|u|)|̃u|→+∞ e
πη

2 κη sin(|u| − �η(u))︸ ︷︷ ︸
=− sin(u+�η(u))

;

if one makes η → −η in the last relation, and multiplies by −1, one obtains

−|u| eı̇ı|u|M(1 − ı̇ıη, 2,−2ı̇ı|u|)|̃u|→+∞ e− πη

2 κη sin(u − �η(u)),

which is exactly the expected relation

Fη(−|u|)|̃u|→+∞ e−πη sin(u − �η(u)).

We only write here the leading order of (11a), we must be very careful of all sign compensations
for the next orders. Eventually, if one makes again η → −η in the last relation, one obtains
directly

F−η(−|u|)|̃u|→+∞ eπη sin(u + �η(u)),

which is the behavior of fη(u) for u ∼ −∞.
The demonstration is very similar for (11b). First note that

t eı̇ıtU(1 + ı̇ıη, 2,−2ı̇ıu) = t e−ı̇ıtU(1 − ı̇ıη, 2, 2ı̇ıu); (A.2)

here, conjugation cannot be omitted. For u > 0, writing u = |u|, using (9b) and keeping only
the real part, one obtains

Re(|u| e−ı̇ı|u|U(1 − ı̇ıη, 2, 2ı̇ı|u|))|̃u|→+∞
e− πη

2

2η Re(�(−ı̇ıη))

cos(|u| − �η(u))

κη

.

For u < 0, writing u = −|u|, using (A.2) and still keeping only the real part, one obtains

Re(|u| eı̇ı|u|U(1 + ı̇ıη, 2,−2ı̇ı|u|))|̃u|→+∞
e− πη

2

2η Re(�(ı̇ıη))

1

κη

cos(|u| − �η(u))︸ ︷︷ ︸
=cos(u+�η(u))

;

20



J. Phys. A: Math. Theor. 42 (2009) 285302 G Abramovici and Y Avishai

if one makes η → −η in the last relation, and multiply by −1, one obtains

Re(−|u| eı̇ı|u|U(1 − ı̇ıη, 2,−2ı̇ı|u|))|̃u|→+∞
e

πη

2

2η Re(�(−ı̇ıη))

cos(u − �η(u))

κη

,

which is exactly

Gη(−|u|)|̃u|→+∞eπη cos(u − �η(u)).

Eventually, if one makes again η → −η in the last relation, one obtains directly

G−η(−|u|)|̃u|→+∞ e−πη cos(u + �η(u)),

which is the behavior of gη(u) for u ∼ −∞.

Appendix B. Expression of t as a function of T

First, we get simple relations between (tα, rα) and (Aα, Bα, aα, bα) (α = R,L):

AL = ı̇ıtL; (B.1a)

BL = tL; (B.1b)

aL = ı̇ı e−πη(1 − rL); (B.1c)

bL = eπη(1 + rL); (B.1d)

AR = −ı̇ı(1 − rR); (B.1e)

BR = 1 + rR; (B.1f )

aR = −ı̇ı e−πηtR; (B.1g)

bR = eπηtR. (B.1h)

The unitarity of S is written as

|r|2 + |t |2 = 1; (B.2a)

tr + rt = 0. (B.2b)

From (B.2b) one deduces
t

|t | = ı̇ıε
r

|r| , (B.3)

where ε = ±1. From relations (B.1b) and (B.1d), one obtains

bL e−πη

BL
= 1 + r

t
.

By use of relations (B.2a) and (B.2b), this is written as

bL e−πη

BL
=

1 + ı̇ıεt
√

1−T
T

t
,

but equation (17a) implies the existence of θ ∈ R such that

bL e−πη

BL
= eı̇ıθ ,
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so, using back relation (14), we obtain

1

t
= eı̇ıθ − ı̇ıε

√
1

|t |2 − 1.

We carefully multiply this equation by its conjugate and find

1

|t |2 = 1 +
1

|t |2 − 1 − 2ε sin(θ)

√
1

|t |2 − 1,

which implies θ = 0 or π . We will write eı̇ıθ = ε′ then

1

t
− ε′ = −ı̇ıε

√
1

|t |2 − 1.

We carefully multiply this equation by its conjugate and find
1

|t |2 + 1 − ε′ 2�(t)

|t |2 = 1

|t |2 − 1 ⇐⇒ �(t) = ε′|t |2,
but |t |2 = �(t)2 + �(t)2, so we obtain

|t |2 = |t |4 + �(t)2 ⇐⇒ �(t) = ε′′√|t |2 − |t |4.
By use of (14), we have t = �(t) + ı̇ı�(t) = ε′T + ı̇ıε′′√T − T 2. We eventually shall prove
that ε′′ = ε. We put the last expression of t into (1 + r)/t and obtain

1 + r

t
=

1 + ı̇ıεt
√

1
T

− 1

t
=
(
1 − εε′′ + T ε

(
ε′′ + ı̇ıε′

√
1
T

− 1
))

(ε′T − ı̇ıε′′√T − T 2)

T

= ε′ + ı̇ı(ε − ε′′)

√
1

T
− 1.

By taking the modulus of this expression, one would find indeed that ε = ε′′. However, we
already know that it is real (because θ = 0 or π ), so one has the result straight. Now, if we
use back the different relations, we can get the final expression of T:

t = ε′T + ı̇ıε
√

T (1 − T ) (B.4)

where ε′ = ±1 is independent of ε. By using relations (B.1e), (B.1f ), (B.1g), (B.1h), (B.1a),
(B.1b), (B.1c), (B.1d), (B.4) and (17a), after some calculations, one obtains

AL = −ε
√

T (1 − T ) + ı̇ıε′T ; (B.5a)

BL = ε′T + ı̇ıε
√

T (1 − T ); (B.5b)

aL = e−πη(εε′√T (1 − T ) + ı̇ı(2 − T )); (B.5c)

bL = eπη(T + ı̇ıεε′√T (1 − T )); (B.5d)

AR = −εε′√T (1 − T ) − ı̇ı(2 − T ); (B.5e)

BR = T + ı̇ıεε′√T (1 − T ); (B.5f )

aR = e−πη(ε
√

T (1 − T ) − ı̇ıε′T ); (B.5g)

bR = eπη(ε′T + ı̇ıε
√

T (1 − T )) (B.5h)

and

r = T − 1 + ı̇ıεε′√T (1 − T ). (B.5i)

Using these relations, one verifies all relations (14), (B.2a), (B.2b) and (17b).
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An important collateral result from this demonstration is indeed that

bL e−πη

BL
= ε′;

from relations (B.1f ), (B.1b), (B.1h), (B.1d), one obtains

bR e−πη

BR
= bL e−πη

BL
= ε′

which proves, by linearity, relation (17b).

Appendix C. Mclaurin expansions

Here we study the behavior of basic solutions fη(u), gη(u) and their derivatives when u → 0.
Let us consider first the expansions of Fη and Gη for u → 0+, which are given by [9]

Fη(u) � e− πη

2 |�(1 + ı̇ıη)|(u + ηt2)

= Cη(u + ηt2);

Gη(u) � 1

Cη

{
2η(u + ηu2)(log(2u) − 1 + p(η) + 2γE) +

(
1 − 1 + 6η2

2
u2

)}
;

dFη

du
(u) � Cη(1 + 2ηu);

dGη

du
(u) � 1

Cη

{2η[(1 + 2ηu)(log(2u) + p(η) + 2γE) − ηu] − (1 + 6η2)u};

d2Fη

du2
(u) � Cη2η;

d2Gη

du2
(u) � 1

Cη

{
2η

[
2η(log(2u) + p(η) + 2γE) + η +

1

u

]
− (1 + 6η2)

}
;

with p(η) = Re
(

�′(1+ı̇ıη)

�(1+ı̇ıη)

) = p(−η) and γE being Euler’s constant. Thus, one obtains, at first
order, for the complete solution ϕ,

ϕ(u, η)
ũ→0+B

1

Cη

; (C.1a)

ϕ(u, η)
ũ→0−b

e−πη

cη

= b

C−η

; (C.1b)

∂ϕ

∂u
(u, η)

ũ→0+AC−η + 2Bη
1

C−η

(log(2u) + p(η) + 2γE); (C.1c)

∂ϕ

∂u
(u, η)

ũ→0−aC−η − 2bη
1

C−η

(log(−2u) + p(η) + 2γE). (C.1d)

Appendix D. Orthonormality relations

The purpose of this section is to calculate the limit, when L → ∞, of∫ L

−L
ψ(x,E1, α1)ψ(x,E2, α2) dx. Consider a given L, this integral with all functions replaced
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by their asymptote (12a) or (12b) becomes

1

2

∫ L

0
dx cos

(
λx

2 η1η2

η1−η2

+ �η1

(
xλ

2η1

)
− �η2

(
xλ

2η2

))
A+

α1α2

− cos

(
λx

2 η1η2

η1+η2

− �η1

(
xλ

2η1

)
− �η2

(
xλ

2η2

))
A−

α1α2

+ sin

(
λx

2 η1η2

η1+η2

− �η1

(
xλ

2η1

)
− �η2

(
xλ

2η2

))
B+

α1α2

+ sin

(
λx

2 η1η2

η1−η2

+ �η1

(
xλ

2η1

)
− �η2

(
xλ

2η2

))
B−

α1α2

+
1

2

∫ 0

−L

dx cos

(
λx

2 η1η2

η1−η2

− �η1

(
xλ

2η1

)
+ �η2

(
xλ

2η2

))
a+

α1α2

− cos

(
λx

2 η1η2

η1+η2

+ �η1

(
xλ

2η1

)
+ �η2

(
xλ

2η2

))
a−

α1α2

+ sin

(
λx

2 η1η2

η1+η2

+ �η1

(
xλ

2η1

)
+ �η2

(
xλ

2η2

))
b+

α1α2

+ sin

(
λx

2 η1η2

η1−η2

− �η1

(
xλ

2η1

)
+ �η2

(
xλ

2η2

))
b−

α1α2
,

where we use

A+
α1α2

= (Aα1Aα2 + Bα1Bα2); A−
α1α2

= (Aα1Aα2 − Bα1Bα2);
B+

α1α2
= (Aα1Bα2 + Bα1Aα2); B−

α1α2
= (Aα1Bα2 − Bα1Aα2);

a+
α1α2

= (aα1aα2
eπ(η1+η2) + bα1bα2

e−π(η1+η2));
a−

α1α2
= (aα1aα2

eπ(η1+η2) − bα1bα2
e−π(η1+η2));

b+
α1α2

= (aα1bα2
eπ(η1−η2) + bα1aα2

e−π(η1−η2));
b−

α1α2
= (aα1bα2

eπ(η1−η2) − bα1aα2
e−π(η1−η2)).

The difference with the exact limit is finite and contributes to constant c in formula (19).
Now, these integrations are easily performed when one notes that all �η(u) functions can be
treated as constant. Indeed, let us consider a simpler integral

∫ L

0 cos(su + ln(u)) du, where we

will omit the problem at u = 0, and δ(L) ≡ 1
s

sin(su + ln(u)) − ∫ L

0 cos(su + ln(u)) du is the
difference of the approximate integral with the exact one. Then, δ′(L) = sin(sL+ln(L))

sL
not only

tends to zero when L → ∞, but has a finite integral
∫ L

0 δ′(u) du. This proves that all such
approximations are valid and simply contribute to constant c.

The x = 0 boundary only contributes to constant c (you may need to replace x = 0 with
another boundary, in order to avoid any divergence, but this replacement simply gives another
contribution to constant c) so we may skip it and eventually get

1

λ

[
η1η2

η1 − η2
sin

(
λL

2 η1η2

η1−η2

+ �η1

(
Lλ

2η1

)
− �η2

(
Lλ

2η2

))
A+

α1α2

+
η1η2

η1 + η2
sin

(
λL

2 η1η2

η1+η2

− �η1

(
Lλ

2η1

)
− �η2

(
Lλ

2η2

))
A−

α1α2
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− η1η2

η1 + η2
cos

(
λL

2 η1η2

η1+η2

− �η1

(
Lλ

2η1

)
− �η2

(
Lλ

2η2

))
B+

α1α2

− η1η2

η1 − η2
cos

(
λL

2 η1η2

η1−η2

+ �η1

(
Lλ

2η1

)
− �η2

(
Lλ

2η2

))
B−

α1α2

− η1η2

η1 − η2
sin

(
λL

2 η1η2

η1−η2

− �η1

(
Lλ

2η1

)
+ �η2

(
Lλ

2η2

))
a+

α1α2

+
η1η2

η1 + η2
sin

(
λL

2 η1η2

η1+η2

+ �η1

(
Lλ

2η1

)
+ �η2

(
Lλ

2η2

))
a−

α1α2

+
η1η2

η1 + η2
cos

(
λL

2 η1η2

η1+η2

+ �η1

(
Lλ

2η1

)
+ �η2

(
Lλ

2η2

))
b+

α1α2

+
η1η2

η1 − η2
cos

(
λL

2 η1η2

η1−η2

− �η1

(
Lλ

2η1

)
+ �η2

(
Lλ

2η2

))
b−

α1α2

]
.

Now, both limits of sin(sL)

s
and cos(sL)

s
when L → ∞ are equal to πδ(s) (with differential

ds). The ln(u) correction has no influence (see appendix E). Then we write δ
(

1
η2

− 1
η1

) =
δ
(

2
λ
(k1 − k2)

) = λ
2 δ(k1 − k2), so we eventually get factor π

λ
λ
2 . We have forgotten the exact

differential dk
2π

in one dimension, and we will include a last factor 2 which accounts for the

equality between the limits of
∫ L

0 and
∫ 0
−L

. Altogether, we get formula (19), with the following
coefficients of matrix P :

Pαα′ = AαAα′ + BαBα′ + aαaα′ e2πη + bαbα′ e−2πη

2
and, with relations (B.5e), (B.5f ), (B.5g), (B.5h), (B.5a), (B.5b), (B.5c), (B.5d), we
eventually obtain

P =
(

1 0
0 1

)
,

thus (18) is verified.

Appendix E. Hermiticity relations at infinity

The calculation of (22a) is similar to the previous orthonormality calculations, although
simpler. Here α = R,L for the choice of ϕα and we use the notations of appendix D. One
obtains

η1 + η2

2η1η2
sin

(
λL

2 η1η2

η1−η2

+ �η1

(
Lλ

2η1

)
− �η2

(
Lλ

2η2

))
A+

αα

− η1 − η2

2η1η2
sin

(
λL

2 η1η2

η1+η2

− �η1

(
Lλ

2η1

)
− �η2

(
Lλ

2η2

))
A−

αα

− η1 − η2

2η1η2
cos

(
λL

2 η1η2

η1+η2

− �η1

(
Lλ

2η1

)
− �η2

(
Lλ

2η2

))
B+

αα

+
η1 + η2

2η1η2
cos

(
λL

2 η1η2

η1−η2

+ �η1

(
Lλ

2η1

)
− �η2

(
Lλ

2η2

))
B−

αα

25



J. Phys. A: Math. Theor. 42 (2009) 285302 G Abramovici and Y Avishai

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35 40

V(r)

r

E

RcR

-V0

Figure F.1. Approximated potential V (r) = VN(r) + VC(r) designed to calculate the fission
probability within the WKB approximation.
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(
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(
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+
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(
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(
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(
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αα

+
η1 − η2

2η1η2
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(
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2 η1η2

η1+η2
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(
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)
+ �η2

(
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− η1 − η2
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cos

(
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2 η1η2

η1−η2

− �η1

(
Lλ

2η1

)
+ �η2

(
Lλ
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))
b−

αα.

One striking thing is that the coefficients 1
η1

± 1
η2

are very different from the previous

case. In order to match with the δ limit, one must divide by 1
η1

∓ 1
η2

, so there is a global

supplementary factor 1
η1

2 − 1
η2

2
, which, when multiplied by δ

(
1
η1

± 1
η2

)
, will always give zero.

Another important difference is that we have made no approximation in this case. It is
worth studying the last limit more carefully than we did before. Using again a simpler case, we
want to prove that limL→∞ 1

s
sin(sL − s ln(L) − κs2 + β) is πδ(s) (κ and β are just constants

here). The important thing is that L̃ ≡ L − ln(L) → ∞ and can be used as a parameter, so
the result is proved, and the limit of (22a) is strictly zero.

Appendix F. Digression: to WKB or not to WKB?

In a nuclear fission process, a light nucleus of mass m and charge q = Zqe > 0 (e.g., an
alpha particle with Z = 2) is trapped in a metastable state at energy E due to a potential
‘pocket’ V (r) = VN(r) + VC(r) of a heavy nucleus of charge q ′ = Z′qe (here r is the distance
between the centers of mass of the two nuclei). The potential is the sum of a strong short-range
attractive nuclear potential VN(r) and a repulsive long-range Coulomb potential VC(r) = qq ′

r
.

The focus of interest is on the escape probability P from the metastable state. In a crude
approximation, V (r) is replaced by a deep potential well of range R and depth −V0 and a
Coulomb tail for r > R (see figure F.1).
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The escape probability is then calculated in the WKB approximation, integrating the

local momentum κ(r) =
√

2m

h̄2 [VC(r) − E)] between the turning points R and Rc (such that

VC(Rc) = E).

� =
∫ Rc

R

κ(r) dr =
∫ Rc

0
κ(r) dr −

∫ R

0
κ(r) dr ≡ �G − �R; P = e−2�.

When R � Rc the result is written as

P = e− 2πmqq′
h̄v e

32mqq′R
h̄2 ≡ PGTR, (F.1)

where v is the relative velocity and PG is the Gamow factor, which contains the energy
dependence of the escape probability. Relation (27), with ε = R, gives the exact escape
amplitude = |t |2 (for the special case V0 = 0 but that can easily be modified). It also shows
that the WKB expression (F.1) cannot be used as R → 0 because it yields a finite escape
probability while the exact result (within the naive model of figure F.1) gives the zero escape
probability. The reason is that the conditions for the use of the WKB approximation are not
met, strictly speaking.

Appendix G. Generalization of recurrence equations

We study the changes of relations (14.1) in [9] for the bound states (e < 0), in the case L = 0.
Note first that (14.1.1) is also changed, it is now written as (29a).

Relation (14.1.6) is now written as (we omit the L = 0 exponent)

A1 = 1; A2 = η; (k + 1)(k + 2)Ak+2 = 2ηAk+1 + Ak.

Relation (14.1.14) is now written as (with our notations)

Lη(u) = 2ηKη(u)

(
log(2u) − 1 +

�′(1 + η)

�(1 + η)
+ 2γE

)
+ θη(u)

with (14.1.17) (relation (14.1.15) is useless here)

θη(u) =
∞∑

k=0

aku
k

and relations (14.1.18)–(14.1.20) now become

a0 = 1; a1 = −1; (k + 1)(k + 2)ak+2 = 2ηak+1 + ak − 2η(2k + 3)Ak+2.

Eventually, note that new relation (14.1.14) also holds for u < 0 as soon as we replace log(2u)

by log(−2u).

Appendix H. Identities between confluent hypergeometric functions and modified
Bessel ones

We found useful identities between confluent hypergeometric functions M
(

1
2 ± n, 2, 2t

)
or

U
(

1
2 ± n, 2, 2t

)
and modified Bessel functions In(t) or Kn(t), for all n ∈ N.

These identities appear to generalize some identity established only for n = 0 or n = 1;
indeed, from relations (13.6.3) and (13.6.21) of [9], one shows

e−tM

(
1

2
, 2, 2t

)
= I0(t) − I1(t); (H.1a)
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e−tU

(
1

2
, 2, 2t

)
= 1

2
√

π
(K0(t) + K1(t)). (H.1b)

Thus, it seems possible to generalize these relations and look for solutions of equations (29a)
and (29b) in the form

fn(t) = t (pn(t)I0(t) − qn(t)I1(t)) (H.2a)

or

gn(t) = t (pn(t)K0(t) + qn(t)K1(t)) (H.2b)

(we took advantage of further relations between the polynomials (pn, qn) defined in
equation (H.2a) and those defined in equation (H.2b) in order to save notations).

Although it works well, it proved more efficient to find directly the recurrence relations
which define pn and qn. Using relation (13.4.11) of [9] for M

(
1
2 − n, 2, 2t

)
, (13.4.10) for

M
(

1
2 + n, 2, 2t

)
, (13.4.26) for U

(
1
2 −n, 2, 2t

)
or (13.4.23) for U

(
1
2 + n, 2, 2t

)
, and making the

derivative of equations (H.2a) and (H.2b) using I′
0 = I1, I′

1(t) = I0(t) − I1(t)/t, K′
0 = −K1

and K′
1(t) = −K0(t) − K1(t)/t , and fixing p0 = q0 = 1, one finds, up to some normalization

factors,

pn+1(x) = (2n + 3)pn(x) + 2x(p′
n(x) − pn(x) − qn(x)) (H.3a)

qn+1(x) = (2n + 1)qn(x) + 2x(q ′
n(x) − pn(x) − qn(x)). (H.3b)

These definitions have one main advantage: these polynomials are real and have integer
coefficients; let us write pn(x) = ∑n

i=0 an
i xi and qn(x) = ∑n

i=0 bn
i x

i , we obtain an
0 =

(2n + 1)!!, bn
0 = (2n − 1)!!, an

n = bn
n = (−4)n.

Eventually, let us fix the normalization problem (note the symmetry between
M
(

1
2 − n, 2, 2t

)
and M
(

3
2 + n, 2, 2t

)
or between U

(
1
2 − n, 2, 2t

)
and U
(

3
2 + n, 2, 2t

)
and

that (−1)!! = 1): ∀ n ∈ N,

e−tM

(
1

2
− n, 2, 2t

)
= 1

(2n + 1)!!
(pn(t)I0(t) − qn(t)I1(t)); (H.4a)

e−tU

(
1

2
− n, 2, 2t

)
= (−1)n

2n+1
√

π
(pn(t)K0(t) + qn(t)K1(t)); (H.4b)

e−tM

(
3

2
+ n, 2, 2t

)
= 1

(2n + 1)!!
(pn(−t)I0(t) + qn(−t)I1(t)); (H.4c)

e−tU

(
3

2
+ n, 2, 2t

)
= 2n

(2n + 1)!!(2n − 1)!!
√

π
(−pn(−t)K0(t) + qn(−t)K1(t)). (H.4d)
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